da.coolreferat.com.ua страница 1
скачать файл

ІСТОРІЯ РОЗВИТКУ ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Перші обчислювальні машини

Неможливо точно відповісти на питання, хто саме винайшов комп'ю­тер. Річ у тому, що комп'ютер не є винаходом однієї людини. Комп'ютер увібрав у собі ідеї та технічні рішення багатьох вчених та інженерів. Розви­ток обчислювальної техніки стимулювався потребою у швидких та точних обчислюваннях і тривав сотні років. У процесі розвитку обчислювальна техніка ставала дедалі більш досконалою. Цей процес триває і в наш час.

Вважається, що перший у світі ескізний малюнок тринадцятирозрядного десятинного сумуючого пристрою на базі коліщаток з десятьма зуб­цями був виконаний Леонардо да Вінчі в одному з його щоденників (вче­ний почав вести цей щоденник ще до відкриття Америки 1492 p.).

1623 року (більш ніж через 100 років після смерті Леонардо да Вінчі) німецький вчений Вільгельм Шиккард запропонував свою модель шести-розрядного десятинного обчислювача, який мав складатися також із зуб­чатих коліщаток та міг би виконувати додавання, віднімання, а також множення та ділення. Винаходи да Вінчі та Шиккарда були знайдені лише в наш час і залишилися тільки на папері.





Обчислювач Вільгельма Шикарда
1642 року 19-річний французький математик Блез Паскаль сконструю­вав першу в світі працюючу механічну обчислювальну машину, відому як підсумовуюча машина Паскаля («Паскаліна»). Ця машина являла собою комбінацію взаємопов'язаних коліщаток та приводів. На коліщатках були зображені цифри від 0 до 9. Якщо перше коліщатко робить повний оберт від 0 до 9, автоматично починає рухатись друге коліщатко. Якщо і друге коліщатко доходить до цифри 9, починає обертатися третє і так далі. Ма­шина Паскаля могла лише додавати та віднімати.


«Паскаліна»
1673 року німецький математик Готфрід Вільгельм фон Лейбніц скон­струював свою обчислювальну машину. На відміну від Паскаля, Лейбніц використав у своїй машині циліндри, а не коліщатка та приводи. На цилінд­ри було нанесено цифри. Кожен циліндр мав дев'ять рядків виступів та зубців. При цьому перший ряд мав один виступ, другий ряд — два висту­пи і так до дев'ятого ряду, який мав відповідно дев'ять виступів. Циліндри з виступами були пересувними, оператор надавав їм певного положення.

Машина Лейбніца, на відміну від підсумовуючої машини Паскаля, була значно складнішою за конструкцією. Вона була здатна виконувати не тіль­ки додавання та віднімання, але й множення, ділення та обчислювання квадратного кореня.



Обчислювальні машини XIX сторіччя

Винахід першої програмованої обчислювальної машини належить видат­ному англійському математику Чарлзу Бебіджу (1830 p.). Він присвятив майже все своє життя цій праці, але так і не створив діючу модель. Бебідж назвав свій винахід «Аналітична машина». За планом машина мала діяти завдяки і силі пару. При цьому вона була б здатна сприймати команди, виконувати обчислення та видавати необхідні результати у надрукованому вигляді. Про­грами в свою чергу мали кодуватися та переноситись на перфокарти. Ідея використання перфокарт була запозичена Бебіджем у французького винахід­ника Жозефа Жаккара (кінець XVIII ст.). Для контролю ткацьких операцій Жаккар використовував отвори, пробиті в картках. Картки з різним розташу­ванням отворів давали різні візерунки на плетінні тканини. По суті, Бебідж був першим, хто використав перфокарти стосовно обчислювальних машин.

У своїй машині Бебідж використав також технологію обчислень, запро­поновану наприкінці XVIII сторіччя французьким вченим Гаспаром де Про-ні. Він розділив обчислення на три етапи: розробка чисельного методу, створення програми послідовності арифметичних дій, проведення обчис­лень шляхом арифметичних операцій над числами згідно зі створеною програмою.



«Аналітична машина» Чальза Бебіджа
Серед учених, які зробили значний внесок у розвиток обчислювальної техніки, була математик леді Авгуота Лавлейс — дочка видатного англій­ського поета лорда Байрона. Саме вона переконала Бебіджа у необхідності використання у його винаході двійкової системи обчислення замість деся­ткової. Вона також розробила принципи програмування, що передбачали повторення послідовності команд та виконання цих команд за певних умов. Ці принципи використовуються і в сучасній обчислювальній техніці.

Чарлз Бебідж вперше висловив ідею використання перфокарт в обчис­лювальній техніці, але реалізовано цю ідею було тільки 1887 року Герма-ном Холерітом. Його машина була призначена для обробки результатів перепису населення США. Також Холеріт уперше застосував для організації процесу обчислення електричну силу.

Картки використовувались для кодування даних перепису, при цьому на кожну людину була заведена окрема картка. Кодування велося за допомо­гою певного розташування отворів, що пробивалися в картці по рядках та колонках. Наприклад, отвір, що був пробитий в третій колонці та четверто­му рядку, міг означати, що людина одружена. Коли картка, що мала розмір банкноти в один долар, пропускалася крізь машину, вона прощупувалась системою голок. Якщо навпроти голки з'являвся отвір, то голка проходила крізь нього і доторкалася до металевої поверхні, що була розташована під карткою. Контакт, який відбувався при цьому, замикав електричний лан­цюг, завдяки чому до результату обчислення додавалася одиниця.

Перші електронно-обчислювальні машини

Перші електронні комп'ютери з'явилися в першій половині XX ст. На відміну від попередніх, вони могли виконувати задану послідовність операцій за програмою, що була задана раніше, або послідовно розв'язувати задачі різних типів. Перші комп'ютери були здатні зберігати інформацію в спеціальній пам'яті.

1934 року німецький студент Конрад Цузе, який працював над диплом­ним проектом, вирішив створити у себе вдома цифрову обчислювальну машину з програмним управлінням та з використанням (вперше в світі) двійкової системи числення. 1937 року машина Z1 (Цузе 1) запрацювала. Вона була 22-розрядною, з пам'яттю на 64 числа і працювала на суто мехахнічній (важільній) базі.



Цузе 1
Необхідність у швидких та точних обчисленнях особливо зросла під час Другої світової війни (1939—1945 pp.) перш за все для розв'язання задач балістики, тобто науки про траєкторію польоту артилерійських та інших снарядів до цілі.

1937 року Джон Атанасов (американський вчений, болгарин за походженням) вперше запропонував ідею використання електронних ламп як носіїв інформації.

В 1942—1943 роках в Англії була створена за участю Алана Тьюрінга обчислювальна машина «Колос». В ній було 2000 електронних ламп. Maшина призначалася для розшифрування радіограм німецького вермахту. «Колос» вперше в світі зберігав та обробляв дані за допомогою електроніки, а не механічно.



«Колос»
Машини Цузе та Тьюрінга були засекреченими, про їх створення стало відомо через багато років після закінчення війни.

1944 року під керівництвом професора Гарвардського університету Говарда Айкена було створено обчислювальну машину з автоматичним керуванням послідовністю дій, відому під назвою Марк 1. Ця обчислювальна машина була здатна сприймати вхідні дані з перфокарт або перфострічок.





«Марк 1»
Машина Марк 1 була електромеханічною, для зберігання даних використовувались механічні прилади (коліщатка та перемикачі). Машина Айкена могла виконувати близько однієї операції за секунду та мала величезні розміри: понад 15 м завдовжки та близько 2,5 м заввишки і складалася більш ніж із 750 тисяч деталей.

1946 року групою інженерів під керівництвом Джона Моучлі та Дж. Преспера Еккерта на замовлення військового відомства США було створено машину ЕНІАК, яка була здатна виконувати близько 3 тисяч операцій за секунду. За розмірами ЕНІАК був більшим за Марк 1: понад ЗО метрів завдовжки, його об'єм становив 85 м3. Важив ЕНІАК 30 тонн. Замість тисяч механічних деталей Марка 1, в ЕНІАКу було використано 18 тисяч електронних ламп.

Суттєвий внесок у створення ЕОМ зробив американський математик Джон фон Нейман, що брав участь у створенні ЕНІАКа. Фон Нейман запропонував ідею зберігання програми в пам'яті машини. Такі ЕОМ були знач­ним кроком уперед на шляху створення більш досконалих машин. Вони були здатні обробляти команди в різному порядку.



«ЕНІАК»
Перша ЕОМ, яка зберігала програми у пам'яті, дістала назву ЕДСАК
(Electronic Delay Storage Automatic Calculator — електронний калькулятор
з пам'яттю на лініях затримки). Вона була створена в Кембріджському університеті (Англія) 1949 року. З того часу всі ЕОМ є комп'ютерами з програмами, які зберігаються у пам'яті.

1951 року в Києві під керівництвом С. Лєбєдєва незалежно було створено МЕОМ (Мала Електрична Обчислювальна Машина). 1952 року ним же було створено ШЕОМ (Швидкодіюча Електрична Обчислювальна Машина), яка була на той час кращою в світі та могла виконувати близько 8 тисяч операцій за секунду.

1951 року компанія Джона Моучлі та Дж. Преспера Еккерта створила машину UNIVAC (Universal Automatic Computer — універсальна автоматична обчислювальна машина). Перший екземпляр ЮНІВАКа було передано в Бюро перепи­су населення США. Потім було створено багато різних моделей ЮНІВАКа, які почали застосовуватися у різних сферах діяльності. Таким чином, ЮНІВАК став першим серійним комп'ютером. Крім того, це був перший комп'ютер, в якому замість перфострічок та карток було використано магнітну стрічку.

Покоління комп'ютерів

Такі комп'ютери, як ЕНІАК, ЕДСАК, ШЕОМ та ЮНІВАК, являли собою лише перші моделі ЕОМ. Упродовж десятиріччя після створення ЮНІВАКа з було виготовлено та введено в експлуатацію в США близько 5000 комп'ютерів.

Гігантські машини на електронних лампах 50-х років склали перше покоління комп'ютерів.

Друге покоління комп'ютерів з'явилося на початку 60-х років, коли на зміну електронним лампам прийшли транзистори. Винайдені 1948 р. транзистори, як виявилось, були спроможні виконувати всі ті функції, які до цього часу виконували електронні лампи. Але при цьому вони були значно менші за розмірами та споживали набагато менше електроенергії. До того ж транзистори дешевші, випромінюють менше тепла та більш надійні, ніж електронні лампи. І все ж таки найдивовижнішою властивістю транзистора є те, що він один здатен виконувати функції 40 електронних ламп та ще й з більшою швидкістю, ніж вони. В результаті швидкодія машин другого покоління виросла приблизно в 10 разів порівняно з машинами першого покоління, обсяг їх пам'яті також збільшився. Водночас із процесом заміни електронних ламп


транзисторами вдосконалювалися методи зберігання інформації. Магнітну стрічку, що вперше було використано в ЕОМ ЮНІВАК, почали використовувати як для введення, так і для виведення інформації. А в середині 60-х років набуло поширення зберігання інформації на дисках.

Поява інтегрованих схем започаткувала новий етап розвитку обчислю­вальної техніки — народження машин третього покоління. Інтегрована схе­ма, яку також називають кристалом, являє собою мініатюрну електронну схему, витравлену на поверхні кремнієвого кристала площею приблизно 10 мм2. Перші інтегровані схеми (ІС) з'явилися 1964 року.

Поява інтегрованих схем означала справжню революцію в обчислювальній техніці. Одна така схема здатна замінити тисячі транзисторів, кожний з яких у свою чергу уже замінив 40 електронних лами. Інакше кажучи, один крихітний, але складний кристал має такі ж самі обчислювальні мож­ливості, як і 30-тонний ЕНІАК!

Швидкодія ЕОМ третього покоління збільшилася приблизно в 100 ра­зів порівняно з машинами другого покоління, а розміри набагато змен­шилися.



Четверте покоління — ЕОМ на великих інтегрованих схемах.

Розвиток мікроелектроніки дав змогу розміщати на одному кристалі тисячі інтегрованих схем. Так, 1980 р. центральний процесор невеликої ЕОМ вдалося розташувати на кристалі площею 1,6 см4. Почалася епоха мікрокомп'ютерів. Швидкодія сучасної ЕОМ в десятки разів перевищує швидкодію ЕОМ третього покоління на інтегральних схемах, в 100 разів — швидкодію ЕОМ другого покоління на транзисторах та в 10 000 разів — швидкодію ЕОМ першого покоління на електронних лампах.



Нині створюються та розвиваються ЕОМ п'ятого покоління — ЕОМ на надвеликих інтегрованих схемах. Ці ЕОМ використовують нові рішення у архітектурі комп'ютерної системи та принципи штучного інтелекту.
скачать файл



Смотрите также:
Історія розвитку обчислювальної техніки перші обчислювальні машини
84.18kb.
Історія розвитку обчислювальної техніки. Покоління еом. Історія обчислювальної техніки. Структура комп’ютера за фон Нейманом. Архітектура комп’ютера
103.76kb.
Тема 2 історія розвитку обчислювальної техніки
80.72kb.
Інформація та інформаційні процеси. Системи числення. Повідомлення. Способи передачі й збереження інформації. Носії інформації. Кодування інформації. Історія розвитку обчислювальної техніки та застосування комп’ютерів. Інформація
207.04kb.
Коротка історія розвитку обчислювальної техніки. Характеристика різних поколінь еом. Основні галузі застосування еом
62.96kb.
Засоби обчислювальної техніки створювались та удосконалювались так само, як і всі інші прилади, машини і обладнання що, призначались для полегшення праці людини
219.56kb.
Закони й тотожності алгебри логіки. Логічні функції однієї та двох змінних
16.65kb.
1. Зробіть огляд розвитку елементної бази обчислювальної техніки. Визначте перспективи використання цифрових мікросхем у різних галузях науки, техніки, виробництва
63.79kb.
Програмування для електронно-обчислювальної техніки та автоматизованих систем
105.37kb.
Нау “Програмування для електронно-обчислювальної техніки та автоматизованих систем”
106.39kb.
Нпт “Програмування для електронно-обчислювальної техніки та автоматизованих систем”
105.96kb.
Про доплати за завідування кабінетами інформатики та інформаційно-комунікаційних технологій навчання, обслуговування електронно-обчислювальної техніки
49.87kb.